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The face development of the equilibrium form of a crystM is discussed. The most important faces 
are F faces. 

For non-ionic crystals it is found that  the equilibrium form may also exhibit S and K faces. 
The surface energy of S and K faces is expressed in terms of the surface energies of neighbouring 
F faces plus a correction term. 

The size of each of these S and K faces is determined by the magnitude of this correction term. 
For the S faces in a certain zone this correction term is expressed in terms of the interaction 
energies of periodic bond chains parallel to the zone axis. The S faces appear on the equilibrium 
form as strips. The breadth of each S face is proportional to a certain negative power of its mesh 
area. As a consequence the morphological importance of an S face is a rapidly decreasing function 
of its mesh area. This relation includes the law of Donnay & I-Iarker for separate zones. 

The K faces are much smaller than the S faces and unimportant.  For ionic crystals the law of 
Donnay & Harker may fail even for a separate zone. In this connexion the angular dependence of the 
interaction energy of two parallel ionic chains is discussed. 

Introduction 

I t  is a well known fact  t ha t  in a crystall ization crop 
very  small  crystals often show more faces than  larger 
ones. These small crystals are formed at  the end of the 
crystall ization process af ter  the larger ones have 
crystallized. The supersa tura t ion  is very low then and 
often the crop has undergone some slow tempera ture  
f luctuations,  which have their  greatest  effect on t iny  
crystals.  The small crystals are therefore closer to the 
equilibrium form than  the larger ones, which show 
wha t  is usually called the growth form. The difference 
between these two forms is well i l lustrated by the work 
of Stranski  & Hon igmann  (1950) on urotropine. 

The equilibrium form of a crystal  is thermodynami-  
cally described by the Gibbs condition tha t  lo.,F, is 
a minimum,  where o.i is the specific surface free energy 
of the i ' t h  face and F i  is its area. When the various 
quantit ies o., are known, the equilibrium form can 
be derived by means of the Wulff  construction (1901). 
F rom a certain point  as origin (the Wulff  point) the 
normals on the faces are drawn.  The lengths of these 
normals  are t aken  proport ional  to the appropr ia te  a~ 
values and a plane is drawn through the end of each 
normal  and perpendicular  to it. The polyhedron en- 
closed by these planes represents the equilibrium form. 

The faces exhibited by this equilibrium form have  
low surface free energies and most  of them belong to 
the class of the F faces ( H a r t m a n  & Perdok,  1955a). 
In  all cases studied so far  it has been found tha t  the 
growth form, when grown in pure solution, or from 
the vapour,  and under  low degrees of supersaturat ion,  
exhibits F faces only. The question arises whether  an 
equilibrium form can show S and K faces also. In  the 
following sections it will be shown tha t  this is some- 
times possible and tha t  as a consequence new light is 

thrown upon the  unders tanding of the law of Donnay  
& Harke r  (1937). 

The specific surface free energy  of an S~ face 
between two F faces 

Suppose the (100) and (010) faces of a trielinic crystal  
are F faces and (110) is the  S z face in between. The 
profile of this la t te r  face is d rawn in Fig. 1 ; it consists 
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Fig. 1. Surface profile of the  S face (110); it  consists of 
a l ternat ing elements  of the  F faces (100) and (010). 

of a l ternat ing elements of the F faces ( H a r t m a n  & 
Perdok,  1955b). This suggests t h a t  the  surface free 
energy per mesh area of the Sz face can be represented 
by the sum of the surface free energies per mesh area 
of the F faces plus a small correction t e rm:  

All0O.ll 0 = Alooo.loo+Aoloo.olo+A1zoAo.11o. (1) 

Here AI~ 0, etc. represent  the mesh areas of the faces 
(110) etc. Now if v l=(100) :  (110) and v~=(010): (110), 
we have : 

A100 = A l l  0 sin v2/sin (vl+v2), 
and 

A0z 0 = All  o sin vl/sin (vl+v2) 

so t h a t  (1) becomes: 

o.11o = o.loo sin v~./sin (~1+~.) 

+O'ol 0 sin ~l/sin (vI+~2)+/io.11o . (2) 
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I t  will be shown now tha t  the S~ face appears  on 
the crystal  only when A Crl~ 0 < 0. In  Fig. 2 we put  

C T 

0 

Fig. 2. Cross-section perpendicular to the c axis of a crystal. 
OA ---- ~r~0e, the specific surface free energy of (100). Sim- 
ilarly OB ---- %10" The face (110) does not appear on the 
crystal; it just touches the edge of (100) and (010) at T. 
In that case OC----o'110. 

OA  -- al0o and O B  = qm0. The line OC is the normal  
on (110). T C  is the position of (110) when it just  
touches the edge between (100) and (010). Now:  

OC = O K + K C ,  
O K  = OD sin v2 and OD = al00/sin (~1+v2), 
K C  = D T  sin vl and D T  = OE = a010/sin (Vl + v2), 

so t h a t  

OC = (~1oo sin ~/s in  (~1+~)+~ol  0 sin ~l/sin (~1+~2). (3) 

I t  follows from (2) and (3) t ha t  OC = al~O when 
A a n o  = 0. (A similar result has been obtained by 
Y a m a d a  (1923) in a different way.) F rom :Fig. 2 it 
is evident  tha t  the face (110) can appear  between 
(100) and (010) only if fill0 < OC, or if Aan0 < 0. 

I t  should be emphasized here tha t  this result is quite 
general. I t  applies to any  face between two other faces• 
We took the example of an S 1 face between two F 
faces in view of the t r ea tmen t  in fur ther  sections• 

To find an expression for A an0 we consider Fig. 3. 

• . . . . . 1  • 2 .~ " " - . .  -"". .~ 
• 2 .~ • • .'"':" .~ 2 

• 2 -1 "~ ' " ' -  • - - ' " -  -1 .2 
• 3 -2 .1 %b,~ :, :.g:, . .1 .2 .3 

(11~) "3 -2 "2 -1 ""%":'" -1 -2 "3 "4 
• -1 , - " ' :  0 . " , , ,  "1 -2 "3 

• 2 -1 , , - ' " -  • "'- .1 -2 -3 
• 2 " 1 1 " *  . . . .  - -1 "2  

. . . .  ., .1 "2 . . . . .  % ,  

Fig. 3. Projection of a triclinic structure along the c axis. Each 
dot represents a periodic bond chain r0ol] seen end on. The 
numbers near the dots indicate the coefficients Cur that differ 
from zero. 

along a plane parallel to (100). The par t  at  the right- 
hand side of the dashed line, marked  (100) in Fig. 3, 
is then removed to infinity. The energy per mesh area  
necessary for this removal is 

c o  q - c o  

2Aloo~1oo = - ~Y ~Y u E ( u ,  v) , 
u = l  v = - - c o  

where E ( u ,  v) is the interaction energy of the  chain 
a t  the origin O with the chain at  a distance 
r (u ,  v) = u a ' + v b ' ;  in the present  case a '  and b' are 
the projections of the a and b axes on a plane perpen- 
dicular to [001], so tha t  a '  = a sin fl and b' = b sin c~. 
Similarly" 

+ o o  c o  

2Ao,o~olo - ~ JS" v E ( u ,  v) 
u = - - o o  v = l  

and 

2Ano(Xno 
-}-(3O O0  

= - _~ . . _ Y m E ( u , m - u ) ,  where m = u + v .  
/ / = - - ( 3 0  ~ ' n = l  

According to (1) the correction term becomes 

2An0Aan0 = - ~ J~'mE(u,  m - u )  
u = - - ¢ x v  m = l  

c o  - k v o  + c o  c o  

+ .2; 22 uE(u,  v) + ._Y . Z  v E ( u ,  v ) .  
~ = 1  V=--O0  ~l=--O0 C = I  

We write this equation in the form 

(4) 

+ ¢ o  ÷ ~  

2AnoAan0 _- ..y . v  % E ( u ,  v) . (5) 
7 / ~ - - O O  ~ ' =  - - O O  

For each pair  of (u, v) values the coefficients cu, 
have been calculated and put  in Fig. 3 near  the cor- 
responding chain. I t  is easy to see tha t  c~  conforms 
to the following scheme- 

u > 0  and v > O "  Cur= 0; 
u < 0  and v < 0 "  c u r =  0; 
u > 0  and v < O" Cur = u, 

C u r  ~ - -  V ,  

u < 0  and v > 0 :  Cur= v, 
C u v  -~  - - U ,  

if l u l < l v l ,  
if lul > Ivl; 
if Jul _~ Iv], 
if lul < Ivl .  

In m a n y  cases E ( u ,  v) is a continuously decreasing 
function of r (u ,  v), so tha t  E(1,  1) will be much larger 
than  other terms E ( u ,  v) in (5). When,  moreovcr,  we 
t~ke into account that E ( u , v ) =  E ( ~ , ~ ) ,  an ap- 
proximate expression for A an0 can be derived from 
(5): 

A(rn0 ~ E(1, 1 ) l A n e .  (6) 

Each  dot represents a periodic bond chain [001] seen 
end on. When the tempera ture  is 0 ° K. the free energy 
is equal to the energy. In  this case the surface free 
energy can be described by the sum of the interaction 
energies of the chains. To obtain the specific surface 
energy of (100) the crystal is divided into two par ts  

The morphological  development of a zone 

Suppose now tha t  both (100) and (110) are present  
on the equilibrium form. W h a t  are then the condi- 
tions tha t  the Se face (210) appears  between the other  
two faces ? The surface free energy per mesh area of 
(210) can be represented by 
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A2z0(1210 = Azoo(i1oo-{-Azzo(:T11o+A21o/1(~21 o . (7) 

A reasoning similar to t ha t  used in the  foregoing sec- 
t ion to derive (6) was applied to the present  case and 
led to the following approximate  expression for/1a2z0: 

/ia210 ~ E(1,  2)/A210 . 

Evident ly  the general approximate  expression for the 
specific surface energy correction is 

/1(~ako ~ E ( k ,  h)/A~ko . (8) 

One remark  must  be made here: equation (8) holds 
only when each face (hk0) appears  between two other 
faces (hi#z0) and (h2k~O) such tha t  h z + h  2 = h and 
#z+k 2 = #. This leads to an addit ion scheme of 
indices (cf. H a r t m a n  & Perdok,  1955b)" 

the frequency of observation and bhk0, we obtain the  
law of Donnay  & H a r k e r  (1937) for a separate  zone 
(cf. also Donnay,  1938). 

Sometimes this law fails to account for the whole 
morphology of a crystal  species (Ha r tman  & Perdok,  
1956), but  in these cases the law often still holds good 
for the development of separate  zones. But  it some- 
t imes even fails to account for the development  of a 
zone. Evident ly  this mus t  occur when the propor- 
t ional i ty  (10) fails. This is the case when the inter- 
action energy E ( u ,  v) either (a) depends not  only on 
the distance between the chains, but  also on their  
mutua l  orientat ion;  or (b) when this energy is not  a 
continuously decreasing function of this distance. 

These deviations occur with ionic chains and will 
be t rea ted  in the next  section. 

F faces: (100) (010) 
S 1 face: (110) 
S 2 faces: (210) (120) 
S 8 faces: (310) (320) (230) (130) 

Thus, e.g. (320) should appear  between (110) and 
(210); (530) between (320) and (210); and so on. 

For  each face (hkO) t h a t  is present  on a crystal,  the 
b read th  b~k0 is proport ional  to d a~k0. The relation to 
the latt ice dimensions is 

b~ko = /laakor(]c, fz)/dhko. (9) 

Here dhk0 is the interplanar  spacing of the face (h]c0); 
r(]c, fz) is the length of the vector r(]c, ]~)= k a ' - h b '  
(cf. Fig. 3). For  a certain zone this length is propor- 
t ional to Ahk0. The interaction energy of two chains 
E(]c, ]~) can often be put  proport ional  to the ( - n ) t h  
power of r(k,  fz). Then, in view of (8) and (9), the 
following proport ional i ty  exists: 

bhk0 ~ A ~-k(2 - 1). (10) 

If  n is large enough, say n > 3, bhk0 soon fades out 
for higher values of h and ]c. The appearance of (210) 
and (120) in a zone (where (110) is present  a,lre~dy), 
decreases bll 0 somewhat .  Likewise b210 will be decreased 
a little when (310) appears  between (210) and (100). 
But  if bn0 >> 521 o >~ b310 the ratio b21o/blzo will hardly  
change, so t ha t  formula (10) still holds good, when 
a number  of S faces appears  on the equilibrium form. 

A crystal  approaches the equilibrium form when it 
is subjected to small t empera ture  fluctuations.  During 
the period of increasing tempera ture  its edges and 
corners are rounded off, and the S faces have a chance 
to appear  when the t empera ture  decreases. Faces with 
a large breadth  b~k0 are more likely to be produced 
t h a n  faces with a small breadth.  Moreover, the former 
are also more likely to be observed than  the latter.  
Hence, the frequency of observation is more or less 
proport ional  to bhk0. Therefore, according to formula 
(10), it is a continuously decreasing function of the mesh 
area Ah~0. When the exponent  n in (10) is equal to 2, 
and when a strict proport ional i ty  is assumed between 

T h e  angular dependence of the  interaction 
between ionic chains 

Let us consider the interaction energy of the ionic 
chains in Fig. 4(a). The chains are seen end on. 
Cylindrical coordinates (z, r, 0) are used. The chain 
direction is taken  as the z axis. The electrostatic 
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Fig. 4. (a) Two ionic chains, a distance r apart, are projected 
along the chain direction. (b) Graphical representation in 
polar coordinates of the interaction energy of the ionic 
chains in (a), when 0 varies from 0 ° to 180 ° . Maximum 
attraction occurs at 76.5 ° and 166.5°; maximum repulsion 
at 31"5 ° and 121.5 ° . 
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potent ial  at  A '  due to the row of equally charged 
ions through A is, according to Madelung (1918), 

4e oo m~l~l'=~[Z=lKo(2=lr~i~l'lp) cos{2=l'z.~-zi.)lp} ] 
2eln  ( r ~ a , 1 2 p ) + C .  (11) 
P 

Here p is the chain period, K 0 is the Hankel  cylinder 
function of order zero, e is the electronic charge and 
C is an infinite constant.  

The total  electrostatic interact ion energy between 
the two chains is 

E = ~Z"e~es~s, (12) 

where i ranges from A to D and j from A '  to D '  
(see Fig. 4(a)). When r is large enough, say r > 2p, 
the terms containing K 0 are negligibly small. The 
interact ion energy of the chains is then equal to 

E ( r ~ A , ,  O) 

- -  (2e~/p) In (r~A~, ") ~ ~ - -  r A D ' r ~ a ,  r c n , l r  ~ a ,  r z c ,  r B o ,  r c A ,  r i)B,) • 

When a, b, and c are small  compared with r~a,, 
each term In r,~ can be expanded into a power series 
of r ] ] , .  Neglecting higher powers than  r]~ , ,  w e  find 

E ( r ~ a , ,  O) 

= - 1 2 e ~ p - l r - ~ t , a ~ { ( b ~ - c ~ )  cos 4 0 - 2 b c  sin 40}. (13) 

Ex t r ema  of this function occur at 

t an  4 0 m  = - -  2bc/ (b ~ -  c 2) , 
from which 

t an  2 0 m  = b / c ,  
o r  

0m 1 1 = 2 ~ ± ~ n ~ .  

The absolute value of each ext remum is: 

(14) 

l E m  I = 12e~P -a r -~ ,  a 2 (b ~ + c ~) . (15) 

The interaction energy changes sign at 

t an  40 o = ( b 2 - c 2 ) / 2 b c ,  
from which 

00 = ½~+(2n+1)7~/8. (16) 

To il lustrate the dependency on 0, a graph is drawn 
in Fig. 4(b) of ~he funct ion 

= - { ( b 2 - c  2) cos 4 0 - 2 b c  sin 40} , 

the 0-dependent par t  in (13), where we took b = 2 
and c = 1 in arbi t rary  units. Wi th in  180 ° two direc- 
tions of m a x i m u m  at tract ion occur, and two others 
of m a x i m u m  repulsion. According to the part icular  
character of F faces, the chains in a crystal structure 
are arranged in such a way tha t  the directions of 
m a x i m u m  at t ract ion are more or less parallel to the 
F faces. But  as a consequence the directions of 

m a x i m u m  repulsion are more or less parallel to the 
S 1 faces. Hence, in general, E ( 1 ,  1) will be positive, 
so tha t  according to (6) Aa l l  0 > 0 and the face (110) 
does not appear on the equi l ibr ium form. 

Would it be possible then for a different S face, 
e.g. (310), to appear  instead of (110) on the equihbr ium 
form ? I t  will be shm~aa tha t  this  does not happen  
either. When  a face (310) is supposed to appear  
between (100) and (010) we can ~wite its surface free 
energy in a form similar to (1)" 

A31o(~31o = 3 A l o o a l o o + A o l o % l o + A z l o A '  0.a~ o . (17) 

On the other hand,  when (310) appears between (100) 
and (210), this  energy is 

A:noCr31o = Aloo~loo+A21o~21o+AsxoA0"31o.  (18) 

From (1), (7), ( 1 7 ) a n d  (18)we find 

A'0"31o = A ~zlo + A 21oA 0"21o/ A zlo + A l loA ~llo/  A 31o . (19) 

If we suppose tha t  IE(1, 1)l >> ]E(1, 5)1 >> IE(1, 3)[,  
the approximat ions  (6) and (8) m a y  be used, so tha t  

A'~al 0 ~ E(1, 1) /Aa l  o . (20) 

Hence also the surface energy correction A'aal 0 is 
positive and the face (310) does not appear  on the 
equil ibrium form. We thus arrive at the conclusion, 
which is a generalization and no doubt  will have 
exceptions, tha t  the equil ibrium form of an ionic 
crystal shows no S faces. When the surface energy of 
the S faces is lowered through adsorption, some of 
these m a y  well appear  on the crystal. This problem 
will be discussed in a later publication. 

I t  m a y  b e  mentioned here tha t  the interact ion 
between chains of neutral  atoms or of molecules varies 
little with the angle. Most of the interaction energy 
will be van der Waals  energy, so tha t  E(1, 1) will 
Mways be negative. In  most cases [E(1, 1)[ >> ]E(1, 2)[ 
and also ]E(1, 1)1 >> IE(2, 1)l, so tha t  we arrive at  a 
second generalized conclusion, namely  tha t  the 
equil ibrium form of a non-ionic crystal  m a y  show 
S 1 faces. I t  evident ly  depends on the value of A ~  0 
whether the breadth is large enough to make the face 
observable. 

T h e  d e v e l o p m e n t  o f  K f a c e s  

For the development  of K faces oll an equil ibrium 
form, similar arguments  apply as with S faces. Their 
appearance is, however, more restricted, as u411 be 
shown now. 

Suppose a crystal has three P.B.C.  vectors [100], 
[010] and [001]. Then (111) is a K face and its surface 
free energy can be expressed as 

A 111 o'111 = A 100 (7100 --~ A 01o (7010 ,J- A 001 0.001 ~- A 111 A O-ll I , 

(21) 

Here A(hl 1 = 0 when the face (111) just  touches the 
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vertex of the pyramid  formed by  (100), (010) and (001). 
This is easily proved when (111) is considered as a face 
in the zone [ l i0]  between (001) and (110). If (111) 
is bound to touch the edge made by (001) and (110), 
then 

AlUGll I = Ao0iao0 i+A110Gllo • 

because E( I ,  1, 0) was supposed to be negative (110) 
must  be present  on the crystal  and so are (101) and 
(011). The face (111) appears only when a m  is smaller 
than  the value a in  belonging to the plane t h a t  touches 
the corner made by the three faces (110), (101) and 
(011) (see Fig. 5(a)). The edge of the lat ter  two faces 

If, moreover, (111) should touch the above men- 
t ioned vertex,  (110) must  have degenerated to a line. 
In  tha t  case 

Allo a11o = Ale o aloe + Aolo 0"010 , 

which proves, in connexion with the foregoing equa- 
tion, t ha t  

Aain = O. 

The quan t i ty  A an1 must  be expressed in terms of 
the interact ion energy E(u,  v, w) between the contents 
of two primit ive uni t  cells the centers of which are 
a distance r(u,  v, w ) =  u a + v b + w c  apart .  Then 

co + c o  + c o  

2A100am0= - ~  ~ Z u E ( u , v , w ) ,  
U = I  V~--OO W=--OO 

and similarly 
+co  co -boo 

2Aoioaoi o = -- ~ ~ ~ vE(u, v, w) , 
u = - - o o  v = l  W=- -co  

+ c o  +co  oo 

2A001(r001 = - -  2 ` '  2 ` '  ~ "  wE(u,  v, W) . 

Now 
co + c o  + c o  

2 A i n a  m - ~ ~ ,.~ qE(u, v, w) , 
q = l  v = - - c o  w = - - c o  

where q = u + v + w ,  so tha t ,  in view of (21), 

co + c o  +co  

2AlxxZaii  ~ -- - ._~ _~Y .~. qE(u, v, w) 
q=l v=--co w=--co 

co +co +co 

+2," Z Z uE(u, v, w) 

+co co +co 

+ 2, Z Z vE(u,v,w) 
u=~co  v = l  w------co 

+ c o  +co  oo 

+ .Z 2,' .,~ wE(u,  v, w) .  (22) 
u = - - c o  v = - - c o  w = l  

If E ( u , v , w )  is negative and  proportion_al to 
[r(u, v, w)[ -~ in most  cases E(1, 1, 0), E(1, 0, 1) and 
E(0,  1, 1) are the largest terms in (22). 

Taking into account t ha t  E(u, v, w ) =  E(~, ~, ~), 
we find the approximat ion 

Aam ~ {E(1,-i, O)+E(l, O, ~)+E(0, 1, 1)}lAin. (23) 

The question arises whether such a K face can 
appear  at  all on the equilibrium form, since the faces 
(110). (101) and (011) will appear also. The energ_y 
E(1, 1, 0) forms the greater  par t  in the energy E(1, 1) 
in (6) t ha t  determines the quan t i ty  Aano. And 

-...~ , ',,,- 
( 0 0 1 )  " . .  ' ,  •., . . . . .  

" " ' "  . . . .  

%,, 

(a) (b) 

Fig. 5. (a) Cross-section of a crystal perpendicular to [110]. 
The face (111) just touches the vertex made by (100), 
(101) and (011). The face (112) just touches the edge be- 
tween (101) and (011). (b) Projection of crystal lattice 
along [110]. 

m a y  be considered as a face (112) the area of which 
is just  zero. As can be seen from Fig. 5(b), one mesh 
of (110) plus one mesh of (112) correspond to two 
meshes of ( l l  1), so t ha t  

2A 111 (7;11 ~-  A l19. 6112 + A 11o a11o ; 

fur ther ,  we have 

A l 1 2  (ri19. = A l e  1 ( 7 1 o 1 + A o l l o " O l  I , 

from which we find 

1110"; 11 = .A lOO °"1oo ~- A OlO °'OLO -~- A OOl °"OOl 

+~-(AnoA(rno+AioiAaloi +AonAaon)  . (24) 

Taking into account only the first (and largest) 
terms in the expressions for A an0 etc., we find 

t 
A m  a m  "~ Alooajoo+ Aoloaolo+ Aool (T001 

- I { E ( 1 ,  1, 0 )+E(1 ,  0, 1 )+E(0 ,  1, 1)},  (25) 

while, according to (21) and (23), 

All l  a111 ,~, A loo aloo-t-Aolo aOlo + Aool aoo 1 
- { E ( 1 ,  1, 0 )+E(1 ,  0, 1 )+E(0 ,  1, 1)}. (26) 

Hence the face (111) will show even between (110), 
(101) and (011). I ts  area is of the order of the breadths 
of the neighbouring S faces, so tha t  it is ra ther  small. 

By  a similar reasoning it could be shown tha t  the 
face (112) will appear  between (102), (012) and (111) 
if these faces are present  on the crystal.  

Wi th  ionic crystals some of the energies E(1, 1, 0) 
etc., or all of them, m a y  be positive. In tha t  case it 
evident ly  depends on the sign of the sum 
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{E(1, 1, O)+E(1, O, 1)+E(O, 1, 1)} whether (111) will 
be present on the equilibrium form. In general this 
expression will be positive, so that (l 1 l) does not 
appear. 

The general aspect of the equi l ibr ium form and 
the law of Donnay & Harker  

From the foregoing section we obtain the following 
general picture. The large faces on the equilibrium 
form are those with small a values. They belong to 
the class of the F faces. The exhibition of other faces 
depends on the type of bonding. We saw that with 
ionic crystals in general no S faces and no K faces 
will be present on the equilibrium form. 

With non-ionic crystals the edges that are parallel 
to P.B.C. vectors are replaced by a set of S faces. 
Each of these faces has the form of a trapezium ex- 
tended in the direction of its parallel sides. Where 
two or more S faces touch each other, K faces may be 
formed which have the appearance of small polygons. 

The real equilibrium form of a crystal is hard to 
obtain. It  is approximated best by a 'tempered' 
crystal, that is a crystal which has been subject to 
small temperature fluctuations. During the period of 
decreasing temperature this crystal grows, though very 
slowly and very little. The K faces, which have the 
highest growth rate and are smallest, h ave the greatest 
chance to disappear. 

This implies that in general S faces are more 
prominent than K faces. 

Moreover, when a crystal is measured, S faces are 
more likely to be observed than K faces, since S faces 
are seen as streaks or lines, while K faces appear as 
spots or points. 

Approximate equilibrium forms may be found in 
nature among the euhedral minerals. Many of them 
crystallized very slowly and have undergone tem- 
perature fluctuations, so that the conditions during 
crystallization were near to equilibrium conditions. 
Many of the relations in the foregoing sections are 
strictly valid only at the absolute zero. However, it 
appears that  these relations hold also at higher 
temperatures, so that the changes brought about by 
these higher temperatures are presumably small. The 
influence of adsorption is certainly not to be neglected. 

Sometimes, however, statistical data may give a 
picture of the morphology that is not too seriously 
affected by this influence. In such cases, where the 
influence of the structure dominates, we may expect 
that a comparison of the available statistical data with 
the form list according to the law of Donnay & Harker 
will reveal the following difference: When both lists 
are cut off at the same number of forms the Donnay- 
Harker list will show more K forms and fewer S forms 
than the list of observed forms. This difference has 
actually been found. Details will be reported later. 

Conclusion 

Although the calculation or the experimental deter- 
mination of the surface energies of F faces is rather 
difficult, it is all the same possible to derive the zone 
development on the equilibrium forms. The general 
relation (10) includes the law of Donnay & Harker 
for separate zones, thereby giving this law of observa- 
tion a theoretical background. 

The angular dependence of the interaction energy 
of ionic chains can sometimes disturb the relation (10) 
and cause a zone development different from the usual 
type. 

As with the growth forms (of. Hartman & Perdok, 
1955a) K faces are unimportant. 

The author expresses his sincere thanks to Dr 
W. G. Perdok for many helpful discussions. 
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